Euler pmlz 2025 pdf 下载 kindle mobi docx 百度云

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:6分
书籍信息完全性:4分
网站更新速度:6分
使用便利性:5分
书籍清晰度:7分
书籍格式兼容性:7分
是否包含广告:7分
加载速度:3分
安全性:4分
稳定性:3分
搜索功能:5分
下载便捷性:4分
下载点评
- 种类多(509+)
- 愉快的找书体验(522+)
- 无广告(306+)
- epub(269+)
- 无多页(648+)
- pdf(674+)
- 体验差(247+)
- 赚了(533+)
- 傻瓜式服务(614+)
- 书籍多(218+)
- 无水印(98+)
- 体验满分(254+)
下载评价
- 网友 田***珊:
可以就是有些书搜不到
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 居***南:
请问,能在线转换格式吗?
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 晏***媛:
够人性化!
- 网友 家***丝:
好6666666
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 濮***彤:
好棒啊!图书很全
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
喜欢"Euler"的人也看了
我要读书 pmlz 2025 pdf 下载 kindle mobi docx 百度云
天降小子 pmlz 2025 pdf 下载 kindle mobi docx 百度云
春雨教育·2018秋·实验班提优训练:小学 语文 五年级 (上 人教版RMJY) pmlz 2025 pdf 下载 kindle mobi docx 百度云
神奇小池塘洗澡书:亲子温情版(全4册) pmlz 2025 pdf 下载 kindle mobi docx 百度云
19春教材解读初中英语七年级下册(外研) pmlz 2025 pdf 下载 kindle mobi docx 百度云
9787030421197 pmlz 2025 pdf 下载 kindle mobi docx 百度云
成长的哲理 pmlz 2025 pdf 下载 kindle mobi docx 百度云
国家职业资格培训教程:助理物流师(国家职业资格三级 第2版) pmlz 2025 pdf 下载 kindle mobi docx 百度云
《中国青少年体育运动项目训练教学系列大纲》教法指导书:乒乓球 pmlz 2025 pdf 下载 kindle mobi docx 百度云
全2册 奇拉的漫画经济教科书 透过经济看世界简单易懂的经济学原理儿童财商金钱认知启蒙寻找经济现场问题树立正确的经济观书籍 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 2013MBA联考备考教程 英语分册 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 城市大探秘:发现巴塞罗那(孤独星球童书系列) pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 小婴孩益智早教图画书 3岁爱阅读 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 欧盟兽药管理法规指南 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 基金从业人员资格考试新版辅导教材·基金法律法规、职业道德与业务规范 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 日本女作家都市小说系列--恋爱中毒 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 和优秀教师一起读苏霍姆林斯基 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 新版全能练考卷八年级下册政治历史2本人教版 初中初2下册教材同步专项突破试卷 单元期中期末冲刺 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 9787543519251 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 世界各G家和地区( 货号:750316258) pmlz 2025 pdf 下载 kindle mobi docx 百度云
书籍真实打分
故事情节:4分
人物塑造:7分
主题深度:6分
文字风格:8分
语言运用:6分
文笔流畅:7分
思想传递:9分
知识深度:3分
知识广度:5分
实用性:9分
章节划分:3分
结构布局:3分
新颖与独特:9分
情感共鸣:8分
引人入胜:7分
现实相关:9分
沉浸感:6分
事实准确性:3分
文化贡献:4分