Euler pmlz 2025 pdf 下载 kindle mobi docx 百度云

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:9分
书籍信息完全性:4分
网站更新速度:9分
使用便利性:7分
书籍清晰度:7分
书籍格式兼容性:6分
是否包含广告:8分
加载速度:4分
安全性:8分
稳定性:3分
搜索功能:8分
下载便捷性:5分
下载点评
- 好评多(158+)
- 无缺页(523+)
- 四星好评(570+)
- 全格式(221+)
- 无颠倒(667+)
- 无漏页(526+)
下载评价
- 网友 利***巧:
差评。这个是收费的
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 国***芳:
五星好评
- 网友 寿***芳:
可以在线转化哦
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 菱***兰:
特好。有好多书
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 养***秋:
我是新来的考古学家
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
喜欢"Euler"的人也看了
财经法规与会计职业道德真题题库名师全解 pmlz 2025 pdf 下载 kindle mobi docx 百度云
你的客户就是我的客户 打破红海僵局 取代竞争对手的业务生存策略 Eat Their Lunch 港台原版 堡垒文化 pmlz 2025 pdf 下载 kindle mobi docx 百度云
【中商原版】杨式太极阐秘 港台原版 大展 庞大明 武术拳术 pmlz 2025 pdf 下载 kindle mobi docx 百度云
世界伟人传记丛书46 pmlz 2025 pdf 下载 kindle mobi docx 百度云
(2020)考研政治张子见八套卷 pmlz 2025 pdf 下载 kindle mobi docx 百度云
PythonWeb开发案例教程 (慕课版) 使用FlaskTornadoDjango 【正版图书】 pmlz 2025 pdf 下载 kindle mobi docx 百度云
明之华章:2019国丝汉服节纪实 pmlz 2025 pdf 下载 kindle mobi docx 百度云
颠覆定律 pmlz 2025 pdf 下载 kindle mobi docx 百度云
人人都是好妈妈 500万妈妈的孕育宝典 pmlz 2025 pdf 下载 kindle mobi docx 百度云
精品上海·上海洋场 薛理勇 著 上海辞书出版社【正版保证】 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 全国BIM技能等级考试教材(二级)设备设计专业 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- TEXTILES NOW 当代纺织品 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 宏章出版2014山东省事业单位公开招聘工作人员考试专用教材《公共基础知识》 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 历练·破茧·成长:小梁留学日记 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 广东省监管场所结核病防治200问 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 行为矫正技术(第2版) pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 穿云鸟 pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 塑料成型工艺与模具设计(塑料成型工艺与模具设计) pmlz 2025 pdf 下载 kindle mobi docx 百度云
- The Best Laid Plans(ISBN=9780446604086) pmlz 2025 pdf 下载 kindle mobi docx 百度云
- 会走路的人/台湾儿童文学馆 pmlz 2025 pdf 下载 kindle mobi docx 百度云
书籍真实打分
故事情节:9分
人物塑造:5分
主题深度:8分
文字风格:3分
语言运用:5分
文笔流畅:3分
思想传递:7分
知识深度:8分
知识广度:9分
实用性:3分
章节划分:3分
结构布局:7分
新颖与独特:8分
情感共鸣:6分
引人入胜:8分
现实相关:7分
沉浸感:3分
事实准确性:7分
文化贡献:3分